

Fig. 7
Fig. 7 illustrates a house. All units are in metres. The coordinates of A, B, C and E are as shown. BD is horizontal and parallel to AE.
(i) Find the length AE.
(ii) Find a vector equation of the line BD . Given that the length of BD is 15 metres, find the coordinates of D.
(iii) Verify that the equation of the plane ABC is

$$
-3 x+4 y+5 z=30
$$

Write down a vector normal to this plane.
(iv) Show that the vector $\left(\begin{array}{l}4 \\ 3 \\ 5\end{array}\right)$ is normal to the plane ABDE. Hence find the equation of the plane ABDE .
(v) Find the angle between the planes ABC and ABDE .

2 In Fig. 6, $\mathrm{ABC}, \mathrm{ACD}$ and AED are right-angled triangles and $\mathrm{BC}=1$ unit. Angles CAB and CAD are θ and ϕ respectively.

Fig. 6
(i) Find AC and AD in terms of θ and ϕ.
(ii) Hence show that $\mathrm{DE}=1+\frac{\tan \phi}{\tan \theta}$.

3 Verify that the vector $\mathbf{d}-\mathbf{j}+4 \mathbf{k}$ is perpendicular to the plane through the points $A(2,0,1), B(1,2,2)$ and $C(0,-4,1)$. Hence find the cartesian equation of the plane. [5]

4 Show that the straight lines with equations \(\mathbf{r}=\begin{aligned} \& 2 \\

\& 4\end{aligned}\)| 2 |
| :--- | and $\mathbf{r}=\quad+\mu$ meet. Find their point of intersection.

5 The points A, B and C have coordinates $(2,0,-1),(4,3,-6)$ and $(9,3,-4)$ respectively.
(i) Show that AB is perpendicular to BC .
(ii) Find the area of triangle ABC .

6 (i) Verify that the lines $\left.\mathbf{r}=\begin{array}{r}-5 \\ 3 \\ 4\end{array}\right)+\lambda\left(\begin{array}{r}3 \\ 0 \\ -1\end{array}\right)$ and $\left.\left.\mathbf{r}=\begin{array}{r}-1 \\ 4 \\ 2\end{array}\right)+\mu r \begin{array}{r}2 \\ -1 \\ 0\end{array}\right)$ meet at the point (1, 3, 2).
(ii) Find the acute angle between the lines.

